

Applying GQM to Improve Software Predictability

Dr. Raymond Madachy Cost Xpert Group

Systems and Software Technology Conference 2004 April 19, 2004

Outline

- Overview
 - Metrics taxonomy and dataset
 - Analysis examples
 - Conclusions

Capability Overview

- Goal-Question-Metric (GQM) framework used to develop a comprehensive set of measures related to software cost, schedule and quality estimation
- Incorporated into Cost Xpert product line
 - Centralized process database supporting queries and analysis
 - Pre-defined metrics analysis templates
- Organization-wide solution for metrics storage and data analysis
 - Project managers, metrics analysts and Systems/Software Engineering Process Groups can define estimation processes, calibrate estimation model parameters, create estimation templates, track projects, perform process improvement tradeoffs and related quantitative analyses
 - Executive management can assess process performance against quantitative goals and evaluate improvement initiatives at different levels in the organization

Goal-Question-Metric

- GQM is a framework for developing a metrics program [1]
- Steps:
 - Generate a set of organizational goals
 - What do you want to improve?
 - Derive a set of questions relating to the goals
 - Answers provide visibility into meeting the goals
 - Develop a set of metrics needed to answer the questions

[1] Victor Basili, *Software Modeling and Measurement: The Goal/Question/Metric Paradigm*, CS-TR-2956, University of Maryland, 1992

GQM Goal Definition Template

- <u>Purpose</u>: To (characterize, evaluate, predict, motivate, etc.) the (process, product, model, metric, etc.) in order to (understand, assess, manage, engineer, learn, improve, etc.) it.
- <u>Perspective</u>: Examine the (cost, effectiveness, correctness, defects, changes, product metrics, reliability, etc.) from the point of view of the (developer, manager, customer, corporate perspective, etc.)
- <u>Environment</u>: The environment consists of the following: process factors, people factors, problem factors, methods, tools, constraints, etc.

Outline

- Overview
- Metrics taxonomy and dataset
 - Analysis examples
 - Conclusions

Metrics Taxonomy Elements

- Goal context definitions
- Goals (~15)
- Questions (~75)
- Metrics (indicators) (~65 not including variants)
 - Multiple analysis categories
 - Metric variants
 - E.g. multiple datasets, Pareto distributions, linear vs. exponential regression, linear vs. logarithmic scales, control chart limit options, discrete vs. continuous distributions, other chart visualization options, etc.
 - Some metric indicators address multiple questions

Goal Trees (1/2)

Improve software Project planning Project tracking goal area: goal area: Predict **Evaluate the project in** process predictability Execute the process in order order to manage it to manage it successful project Improve effort Improve defect predictability predictability Achieve business Improve schedule value predictability Deliver a quality product within cost and schedule constraints

Goal Trees (2/2)

Sample Organizational Questions

- Process database query and analysis capabilities allows you to answer the following types of questions:
 - What is the accuracy of our cost estimates against actuals?
 - What is the cost and schedule performance expected across different department or product lines?
 - Have process improvement initiatives paid off in terms of productivity gains?
 - How do we compare against the industry competition and best-inclass?
 - Is the defect density of our products decreasing over time?
 - What is the impact on process performance of a given project factor?
 - Does our risk management process reduce the risk profile on projects?

Metrics Analysis Categories

- Factor Analysis
- Process Trends
- Benchmarking
- Process Control
- Calibration
- Distributions
- Project Tracking
- These categories sometimes overlap

Metrics Analysis Dataset (1/3)

- Calibrated estimation model coefficients
 - Equation parameters to estimate top-level effort, schedule, defects, pages
 - Linear and exponential terms
 - Per project type
 - Lifecycle phase/activity distribution percentages
 - Factor effort multipliers

Model inputs

- Product size (volume)
 - {SLOC, function points, use cases, UML entities, Mark II function points, object metrics, GUI metrics, feature points, Internet points, capability requirements, custom size measures}
 - New, modified, reused, COTS, derived equivalent sizes
 - Per module, iteration

Metrics Analysis Dataset (2/3)

- Model inputs (continued)
 - Environmental factors and constraints
 - Exponential scale factors (5)
 - Linear cost factors (35)
 - Personnel, platform, project, product, task assignment, internet, custom factors
 - Project constraints (4)
- Model outputs
 - Effort, schedule, cost, defects, pages
 - Per phase, activity, labor category

Metrics Analysis Dataset (3/3)

- Historical actuals for all estimation inputs and outputs
- Derived process measures
 - Estimation figures of merit
 - Relative error, mean magnitude of relative error, prediction level
 - For effort, schedule and defect estimation
 - Per project type or other portfolio
 - Process performance
 - Productivity, defect density, CPI, SPI, business value attainment, etc.
 - Some by phase or activity

Outline

- Overview
- Metrics taxonomy and dataset
- Analysis examples
 - Conclusions

Calibration Examples

Goal: Improve effort predictability

Question: How accurate are post-calibrated

effort estimates

Metric: Relative effort error distribution

Goal: Improve effort predictability

Question: Is the effort estimation process

under control?

Metric: Relative effort error control chart

Factor Analysis Examples

Question: Improve effort predictability

Question: How can we predict effort?

Metric: Size vs. effort correlation

• Showing multiple datasets also answers questions comparing project subgroups

Goal: Improve effort predictability

Question: What are the relative impacts of

the scale factors?

Metric: Size exponent weight range per

scale factor

Benchmarking Examples (1/2)

Goal: Characterize the process to understand it Question: Does the profile of tool usage differ between project subgroups?

Metric: Frequency histogram of tool usage ratings

Goal: Improve quality

Question: How does defect density compare among project subgroups?

Metric: Average Defects/KSLOC by project type

Benchmarking Examples (2/2)

Goal: Evaluate the process in order to {understand, improve} it

Question: How does productivity compare between project subgroups?

Metric: Continuous frequency histogram of actual productivity per subgroup

Goal: Characterize the process in order to understand it

Question: How does the effort adjustment factor compare among projects?

Metric: Effort adjustment factor per project

• Pareto view also answers questions about which projects are most effort-intensive

Trend Analysis Examples

Goal: Improve quality

Question: Is defect density decreasing over

time?

Metric: Defect density trend chart of completed variances?

projects

Goals: Adhere to cost and schedule budgets (current project)

Questions: What are the cost and schedule

Metrics: Cost performance index (CPI) and schedule performance index (SPI) trends

Distribution Examples

Goal: Improve quality

for defect prevention?

Metric: Defect category distributions

Goal: Minimize schedule

Question: What are high-leverage opportunities **Question**: Where is the cycle-time taken in the lifecycle phases?

Metric: Percent of schedule per lifecycle phase

• Clustered bar chart also answers lifecycle benchmarking questions

Outline

- Overview
- Metrics taxonomy and dataset
- Analysis examples
- Conclusions

Conclusions

- GQM is a handy organizer
- Estimation models naturally support diverse process goal areas
 - Rich estimation dataset allows for a wide range of process analyses
- Automated analysis quickly pays for itself
 - Pre-defined templates save time
 - Existing GQM coverage already addresses primary process goals
 - Indicator visualizations support quicker insight and group understanding;
 it's easier to discover trends and relationships
- Ongoing data collection, prediction model tuning, and proactive process feedback are essential for continuous improvement
- A repeatable estimation process impacts the bottom line
 - decreased project overruns, increased profits and ROI